👤

Sa se determine rația unei progresii aritmetice (an)n>1 stiind ca a15-a3=radical128. Vaaa rooog repedeee❤❤❤

Răspuns :

Într-o progresie aritmetică, formula termenului general este:

an = a1 + (n-1)r,

unde r este rația progresiei si a1 este primul termen.

Atunci:

a15 = a1 + (15-1)r = a1 + 14r

a3 = a1 + (3-1)r = a1 + 2r

a15 - a3 = radical 128

a1 + 14r - (a1 + 2r) = radical(2^7)

a1 + 14r - a1 - 2r = 8 radical2

12r = 8 radical2

r = (8 radical 2)/12

r = (2 radical 2)/3