Răspuns:
la punctul a) AN=AC-NC=28-8=20cm
MB/AM=2/5
Obs ca NC/AN=8/20=2/5
Deci MB/AM = NC/ AN
ΔAMN comparat cu Δ ABC
∡A ≡ ∡A ( unghi comun) LUL
MB/AM= NC/AN ====> ΔAMN ≈ ΔABC
la b) P BCNM= BC+CN+NM+MB
Stim ca BC= 35 cm, CN= 8 cm. Trebuie sa aflam NM si MB
MB/AM=2/5 => AM= 5MB/2
AM+MB=AB <=> 5MB/2 + MB=AB <=> 5MB+2MB=2 AB
<=> 7MB=2AB <=> 7*MB=2*21 <=> MB=2*21/7 <=> MB=6 cm
Din a) ΔAMN ≈ ΔABC => AM/AB=AN/NC=MN/BC
MN/BC= AN/AC <=> MN/35=20/28 <=> MN=35*20/28 <=> MN=25 cm.
Deci, P BCMN= (35+8+25+6) cm= 74cm
Sper că te-am ajutat!