[tex]4^x-7\cdot 10^x+10\cdot 25^x=0\\\\\Rightarrow 2^{2x}-7\cdot (2\cdot 5)^x+10\cdot 5^{2x} = 0\Big|:(5^{2x}\neq 0)\\ \\ \Rightarrow \left(\dfrac{2}{5}\right)^{2x}-7\cdot \left(\dfrac{2}{5}\right)^x+10 = 0\\ \\\text{Notez: } \left(\dfrac{2}{5}\right)^{x} = t\\ \\ \Rightarrow t^2-7t+10 = 0\\ \Rightarrow t^2-5t-2t+10 = 0\\\Rightarrow t(t-5)-2(t-5) = 0\\ \Rightarrow (t-5)(t-2) = 0[/tex]
[tex]\bullet \,\,\,\,t = 5 \Rightarrow \left(\dfrac{2}{5}\right)^x = 5 \Rightarrow x = \log_{\frac{2}{5}}5\\ \\ \bullet \,\,\,\,t = 2 \Rightarrow \left(\dfrac{2}{5}\right)^x = 2 \Rightarrow x = \log_{\frac{2}{5}}2\\\\\Rightarrow \boxed{S =\left\{\log_{\frac{2}{5}}5;\,\log_{\frac{2}{5}}2\right\}}[/tex]