👤

Se considera expresia E(x)=[tex]\frac{x}{x^2+3x}[/tex]-([tex]\frac{1}{x-3}[/tex]-[tex]\frac{1}{x+3}[/tex]) : [tex]\frac{6}{x-3}[/tex] , unde x este numar real, x[tex]\neq {3}[/tex]

Răspuns :

[tex]E(x)= \frac{x}{x^2+3x} - ( \frac{x+3-x+3}{(x-3)(x+3)} )*\frac{x-3}{6} \\E(x)=\frac{x}{x^2+3x}-\frac{6}{(x-3)(x+3)} *\frac{x-3}{6} \\E(x)=\frac{x}{x(x+3)}-\frac{1}{x+3} \\E(x)=\frac{x}{x(x+3)}-\frac{x}{x(x+3)} \\E(x)=0[/tex]