Răspuns:
Explicație pas cu pas:
a( 2 - √3) - 1/[√2(√2+1)] = √2/2
a( 2 - √3) = √2/2 + 1/(2+√2)
-> amplific fractia 1/(2+√2) cu (2-√2)
a( 2-√3) = √2/2 + (2-√2) /[(2+√2)(2-√2)
(2+√2)(2-√2) = 4 + 2√2-2√2-√4 = 4 - 2 = 2
a(2-√3) = √2/2 + (2 - √2)/(4-2)
a(2-√3) = (2+√2-√2)/2
a(2 -√3) = 2/2
a = 1/(2-√3)
-> amplific fractia 1/(2-√3) cu 2+√3
a = (2+√3)/[(2-√3)(2+√3)
a = (2+√3)/(4-3)
a = 2 + √3