👤

Se consideră N = 6 la puterea 2020 cu divizorii săi naturali d1 > d2 > ... > dk, unde d1 = N şi dk = 1. Notăm cu Si suma divizorilor impari şi cu Sp suma divizorilor pari ai lui N.
(a) aflaţi d10;
(b) arătaţi că Si | Sp
(c) arătaţi că Si este un număr compus.


Răspuns :

[tex]N = 6^{2020}\\\\a)\,\, D_{6^{2020}}^+ = \{1,2,3,4,6,8,9,12,16,18\}\\\Rightarrow d_{10} = 18\\ \\b)\,\,S_{i} = 1+3+3^2+3^3+...+3^{2020}\\S_p=(2^1+2^2+...+2^{2020})\cdot (1+3+3^2+3^3+...+3^{2020})\\ S_p =(2^1+2^2+...+2^{2020}) \cdot S_i\Rightarrow S_i\,|\,S_p\\ \\c)\,\,2021 = 43\cdot 47\\ \\ S_i = 1+3+3^2+3^3+...+3^{2020} \\\\ = (1+3+3^2+...+3^{42})+3^{43}(1+3+3^2+...+3^{42})+\\+3^{86}(1+3+3^2+...+3^{42})+...+3^{1978}(1+3+3^2+...+3^{42})\\ \\=(1+3+3^2+...+3^{42})(1+3^{43}+3^{86}+...+3^{1978})\,\,\,\,\checkmark[/tex]