[tex]\text{Daca $\{a_n\}_{n \in \mathbb{N}}$ este o progresie aritmetica cu ratia r si prim termen $a_{1}$}:\\a_{n} = a_{1} + r(n-1)[/tex]
[tex]a_{2} = 2 + 5(2 -1) = 2 + 5 = \boxed{7}\\a_{10} = 2 + 5(10 - 1) = 2 + 5 \cdot 9 = 2 + 45 = \boxed{47}.\\a_{1000} = 2 + 5(1000 - 1) = 2 + 5 \cdot 999 = 4997.[/tex]