[tex]I_1=\frac{E}{R_1+r}\\ I_2=\frac{E}{R_2+r}\\ P_1=R_1I_1^2=\frac{R_1E^2}{(R_1+r)^2}\\P_2=R_2I_2^2=\frac{R_2E^2}{(R_2+r)^2}\\P_1=P_2<=>\frac{R_1E^2}{(R_1+r)^2}=\frac{R_2E^2}{(R_2+r)^2}|:E^2<=>R_1(R_2+r)^2=R_2(R_1+r)^2<=>R_1(R_2^2+2R_2r+r^2)=R_2(R_1^2+2R_1r+r^2)<=>R_1R_2^2+2R_1R_2r+R_1r^2=R_2R_1^2+2R_1R_2r+R_2r^2<=>R_1R_2(R_1+R_2)=r^2(R_1+R_2)|:(R_1+R_2)=>r^2=R_1R_2=>r=\sqrt{R_1R_2}=\sqrt{2*28}=\sqrt{56}=7,48\Omega=>r=7,48\Omega[/tex]
[tex]R_s=R_1+R_2=2+28=30 \Omega\\I_s=\frac{E}{R_s+r}=\frac{20}{30+7,48}= 0,53 A\\P_s=R_sI_s^2=30*0,53^2=0,28*30=8,4 W=>P_s=8,4W\\\eta=\frac{R_s}{R_s+r}=\frac{30}{30+7,48}= 0,8=>\eta=80\%\\[/tex]
[tex]P_{max}=>R_s=r'=>r'=30\Omega[/tex]