Răspuns:
a)
(1/2)^13 x (1/2)^12 - (1/2)^25 =
(1/2)^25- (1/2)^25=
(1/2)^0=
1
b)
[(1 intreg 2/3)^3 - (5/3)^2] + 1/3 =
{[(1×3+2)/3]^3- (5/3)^2}+1/3=
[(5/3)^3-(5/3)^2]+1/3=
(125/27- 25/9)+1/3=
(125/27- 75/27)+1/3=
50/27+1/3=
50/27+9/27=
59/27
c) [ (0,2)^3 - 1/125] : (1/10)^2 =
[(2/10)^3- 1/125]:1/100=
[(1/5)^3-1/125]×100=
(1/125- 1/125)×100=
0×100=
0
d)
0,(09) x (21/20 + 0,3 : 2/5) : 11/10 + 0,1(63)/(0,4 + 3 întregi 1/5) x 5=
9/99×(21/20+3/10×5/2)×10/11+[(162/990)]/[4/10+ (3×5+1)/5]×5=
1/11×(21/20+ 3/4)×10/11+ [(9/55)]/[2/5+16/5]×5=
1/11×(21/20+15/20)×10/11+[(9/55)/(18/5)]×5=
1/11×36/20×10/11+ (9/55×5/18)×5=
1/11× 9/5×10/11+ 1/22×5=
18/121+ 5/22=
36/242+ 55/242=
91/242
Explicație pas cu pas: