E(x) = (x^2 + 2*x*4 + 4^2 - 3x - 3 - 1)*(x^2 + 5x - 3) + 9
E(x) = (x^2 + 8x + 16 - 3x -4)*(x^2 + 5x - 3) + 9
E(x) = (x^2 + 5x + 10)*(x^2 + 5x - 3) + 9
Notez: x^2 + 5x = y
E(x) = (y + 10)*(y - 3) + 9
E(x) = y^2 - 3y + 10y - 30 + 9
E(x) = y^2 + 7y -21
Înlocuiesc înapoi y:
E(x) = (x^2 + 5x)^2 + 7(x^2 + 5x) - 21
E(x) = (x^2)^2 + 2*(x^2)*5x + (5x)^2 + 7x^2 + 35x - 21
E(x) = x^4 + 10x^3 +25x^2 + 7x^2 + 35x - 21