Răspuns:
1.I=[tex]\int\limits^1_{-1} \,\frac{1}{\sqrt{1-x^2} } dx =[/tex]
arcsinx║₋₁¹=arcsin1-arcsin(-1)=[tex]\frac{\pi }{2} -\frac{-\pi }{2}[/tex]=
[tex]\frac{\pi }{2} +\frac{\pi }{2} =\pi[/tex]
2.f(x,y)=(x+y)e^(x+y) in M(1,0)
df(x,y)/dx=(x+y) `*e^(x+y) `=e^x consideri x variabila si y constanta
d f(x,y)/dy=(x+y) `e(x+y) `=e^y consideri y variabila si x constant
revin in 10 min
f `(1,0)=(e^1,e^0)=(e,1)
2Explicație pas cu pas: