Răspuns :
Răspuns:
27 l de apă în vasul A
45 l de apă în vasul B
Explicație pas cu pas:
Notăm a= volumul din vasul A și b=volumul din vasul B
1. turnăm 1/3 din vasul A în vasul B
a-a/3=2a/3 rămâne învasul A, după prima operație
b+a/3=(3b+a)/3 în vasul B, după prima operație
2. turnam 1/3 din (3b+a)/3, (vasul B) in vasul A, care este 2a/3
2a/3+1/3 *(3b+a)/3=(6a+3b+a)/9=(7a+3b)/9 in vasul A, după a 2-a operație
(3b+a)/3-1/3* (3b+a)/3=(9b+3a-3b-a)/9=(6b+2a)/9 in vasul B, după a 2-a operație
(7a+3b)/9=36 => 7a+3b=324 /*2
(6b+2a)/9=36=> 2a+6b=324
14a+6b=648
2a+6b=324(-)
12a =324
a=324:12
a=27 l de apă în vasul A
2*27+6b=324
6b=324-54
b=270:6
b=45 l de apă în vasul B
Verificare:
1. 27-27:3=27-9=18 l in vasul A după prima operație
45+27:3=45+9=54 l in vasul B după prima operație
2. 54-54:3=54-18=36 l in vasul B după a 2-a operație
18+54:3=18+18=36 l in vasul A după a 2-a operație
Cerinta:
"Avem doua vase A si B pline cu apa. Turnam a treia parte din A in B. Apoi turnam a treia parte din B in A. Dupa aceaste doua operatii constatam ca in fiecare vas se afla 36 de litri de apa. Cati litri de apa erauinitial in fiecare vas?"
Solutie:
A - cantitatea initiala din vasul A
B - cantitatea initiala din vasul B
→→ a treia parte inseamna [tex]\bf \dfrac{1}{3} \:din\:A[/tex] sau [tex]\bf \dfrac{1}{3} \:din\:B[/tex]
Cata apa a ramas in vasul A dupa prima operatie?
[tex]\bf A - \dfrac{1}{3}\cdot A = \dfrac{3A-A}{3} = \boxed{\bf \dfrac{2A}{3}}[/tex] apa ramasa in vasul A dupa prima operatie
Cata apa a este in vasul B dupa prima operatie?
[tex]\bf B+ \dfrac{A}{3}=\dfrac{3B}{3}+\dfrac{A}{3}= \boxed{\bf \dfrac{3B+A}{3}}[/tex] apa ramasa in vasul B dupa prima operatie
Cata apa a ramas in vasul B dupa a doua operatie?
[tex]\bf \dfrac{3B+A}{3}-\dfrac{1}{3}\cdot\dfrac{3B+A}{3} = \dfrac{9B+3A-3B-A}{9}=\boxed{\bf\dfrac{6B+2A}{9}}[/tex] apa ramasa in vasul B dupa a II a operatie
Cata este in vasul A dupa a doua operatie?
[tex]\bf \dfrac{2A}{3} + \dfrac{1}{3}\cdot \dfrac{3B+A}{3}=\dfrac{6A+3B+A}{9}= \boxed{\bf \dfrac{7A+3B}{9}}[/tex] cantitatea apei in vasul A dupa a II a operatie
egalam cu 36 si vom afla cantitatea de apa din vasul B, respectiv A
[tex]\bf \dfrac{6B+2A}{9} = 36\:\:|\cdot9[/tex] ⇒ 6B+2A= 36 · 9 ⇒ 6B + 2A = 324
[tex]\bf \dfrac{7A+3B}{9} =36\:\:|\cdot9[/tex] ⇒
7A + 3B = 324 |·2 ⇒ 14A + 6B = 648
scadem cele doua relatii si vom avea:
14A + 6B = 648
6B + 2A = 324
14A + 6B - 6B - 2A = 648 - 324
12A = 324
A = 324 : 12
A = 27 litri apa erau initial in vasul A
6B + 2·27 = 324
6B + 54 = 324
6B = 324 - 54
6B = 270 | : 6
B = 45 litri de apa erau initial in vasul B
Vă mulțumim că ați vizitat site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Dacă aveți întrebări sau nevoie de asistență suplimentară, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!