👤

Cum se rezolvă un exercițiu de forma
8 la puterea n + 8 la puterea n+1= 18• 2 la puterea 2003?


Răspuns :

Salutare!

[tex]\bf 8^{n}+8^{n+1}=18 \cdot 2^{2003}[/tex]

[tex]\bf 8^{n} \cdot(8^{n-n}+8^{n+1-n}) =9\cdot 2 \cdot 2^{2003}[/tex]

[tex]\bf 8^{n} \cdot(8^{0}+8^{1}) =9\cdot 2^{2003 +1}[/tex]

[tex]\bf 8^{n} \cdot(1+8) =9\cdot 2^{2004}[/tex]

[tex]\bf 8^{n} \cdot 9 =9\cdot 2^{2004}\:\:\:|:9\:\:\text{(\it impartim toata relatia cu 9)}[/tex]

[tex]\bf 8^{n} = 2^{2004}[/tex]

[tex]\bf (2^{3})^{n} = 2^{2004}[/tex]

[tex]\bf 2^{3\cdot n} = 2^{2004}[/tex]

[tex]\bf 2^{3n} = 2^{2004}[/tex]

[tex]\bf 3n = 2004\:\:\:|:3\:\:\text{(\it impartim toata relatia cu 3)}[/tex]

[tex]\boxed{\bf n = 668}[/tex]

==pav38==