[tex]\displaystyle\bf\\Se da:\\a+b=9\\a^2+b^2=75\\Se cere:\\a\times b=?\\\\Rezolvare:\\\\(a+b)^2=a^2+2\times a\times b+b^2\\\\(a+b)^2=(a^2+b^2)+2(a\times b)\\\\2(a\times b)=(a+b)^2-(a^2+b^2)\\\\a\times b=\frac{(a+b)^2-(a^2+b^2)}{2}\\\\a\times b=\frac{(9)^2-75}{2}\\\\a\times b=\frac{81-75}{2}\\\\a\times b=\frac{6}{2}\\\\a\times b=3[/tex]
.
Observatie:
Fara calcule, se vede "cu ochiul liber" ca nu exista numere a; b naturale
cu proprietatea:
a + b = 9
a² + b² = 75
a × b = 3
Rezulta ca numerele a si b sunt irationale.