Răspuns :
[tex]\displaystyle\bf\\4)\\La~toate~subpunctele~folosim~formula:~~\\\\Produsul~mezilor=produsul~extremilor\\\\a)\\\\\frac{36}{x}=\frac{x}{4}\\\\x^2=36\cdot4\\\\x^2=144\\\\x=\sqrt{144}\\\\x=12\\\\b)\\\\\frac{x}{0,02}=\frac{8}{x}\\\\x^2=8\cdot0,02\\\\x^2=0,16\\x=\sqrt{0,16}=0,4\\\\c)\\\\\frac{x}{\sqrt{3}}=\frac{48}{x}\\\\x^2=\sqrt{3\cdot48}\\\\x^2=\sqrt{144}\\\\x^2=12\\\\x=\sqrt{12}\\\\x=2\sqrt{3}[/tex]
.
[tex]\displaystyle\bf\\d)\\\\\frac{1,21}{x}=\frac{x}{16}\\\\x^2=16\cdot1,\!21\\\\x=\sqrt{16\cdot1,\!21}\\\\x=4\cdot1,1\\\\x=4,4\\\\e)\\\\\frac{~\dfrac{9}{4}~}{x}=\frac{x}{~\dfrac{1024}{81}~}\\\\\\x^2=\frac{9}{4}\cdot\frac{1024}{81}=\frac{256}{9}\\\\\\x=\sqrt{\frac{256}{9}}\\\\\\x=\frac{16}{3}[/tex]
.
[tex]\displaystyle\bf\\f)\\\\\frac{x}{~\dfrac{64}{11}~}=\frac{~\dfrac{275}{484}~}{x}\\\\\\x^2=\frac{64}{11}\cdot\frac{275}{484}=\frac{16}{1}\cdot\frac{25}{121}=\frac{400}{121}\\\\\\x=\sqrt{\frac{400}{121}}\\\\\\x=\frac{20}{11}\\\\\\g)\\\\\frac{x}{2\sqrt{5}}=\frac{\sqrt{125}}{x}\\\\x^2=2\sqrt{5}\cdot \sqrt{125}=2\sqrt{5\cdot125}=2\sqrt{625}=2\cdot25\\\\x=\sqrt{2\cdot25}\\\\x=5\sqrt{2}[/tex]
.
.
5)
[tex]\displaystyle\bf\\Se~da:\\m_g (a;~b)=30\\\\a=12\\\\Se~cere:\\m_a (a; b)\\\\Rezolvare:\\\\m_g=\sqrt{12\times b}=30\\\\\sqrt{12\times b}=30~~~\Big| ridicam~la~puterea~a~2-a\\\\12\times b=900\\\\b=\frac{900}{12}\\\\b=75\\\\m_a (a;~b)=m_a (12;~75)\\\\m_a=\frac{12+75}{2}=\frac{87}{2}=43,\!5[/tex]
Vă mulțumim că ați vizitat site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Dacă aveți întrebări sau nevoie de asistență suplimentară, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!