Răspuns: Demonstratia e mai jos
Explicație pas cu pas:
Salutare!
[tex]\bf A = 2^{n}\cdot 4+2^{n} \cdot 2 - 2^{n}[/tex]
[tex]\bf A = 2^{n}\cdot(2^{n-n}\cdot 4+2^{n-n} \cdot 2 - 2^{n-n})[/tex]
[tex]\bf A = 2^{n}\cdot(2^{0}\cdot 4+2^{0} \cdot 2 - 2^{0})[/tex]
[tex]\bf A = 2^{n}\cdot(1\cdot 4+1 \cdot 2 - 1)[/tex]
[tex]\bf A = 2^{n}\cdot( 4+2 - 1)[/tex]
[tex]\bf A = 2^{n}\cdot 5 \implies A\:\: \vdots\:\:5[/tex]
⊱─────✧pav38✧─────⊰