[tex]( { {3}^{3} )}^{4} \div {9}^{5} - ( {4}^{3} \times {2}^{5} ) \div {2}^{10} [/tex]
aducem la baza comuna si obținem:
[tex] {3}^{12} \div {3}^{2 \times 5} - ( {2}^{2 \times 3} \times {2}^{5} ) \div {2}^{10} [/tex]
[tex] {3}^{12} \div {3}^{10} - ( {2}^{6} \times {2}^{5} ) \div {2}^{10} [/tex]
[tex] {3}^{2} - {2}^{11} \div {2}^{10} [/tex]
[tex]9 - {2}^{1} [/tex]
[tex]9 - 2[/tex]
[tex]7[/tex]