Răspuns :
Răspuns:
AB=16, CD=10.
a) LinieMij=(AB+CD):2=(16+10):2=26:2=13.
b) [BD) bisectoarea ∠ABC, ⇒∡ABD=∡CBD. Dar AB║CD, BD secantă a lor, deci, ∡ABD=∡BDC ca unghiuri alterne interne. Atunci ∡BDC=∡DBC, deci ΔBDC este isoscel cu baza BD, ⇒BC=CD=10.
c) Fie CP⊥BD, P∈AB si BD∩CP={E}. In ΔBDC, CE⊥BD, deci CE este si mediana, ⇒BE=DE. ΔPBE~ΔCDE, atunci laturile lor sunt proportionale, deci BE/DE=PE/CE. Deoarece BE=DE, ⇒BE/DE=1, atunci, si PE/CE=1, ⇒PE=CE. Atunci ΔPBE≡ΔCDE, deci PB=CD. Deoarece PB e si paralel cu CD, ⇒patrulaterul PBCD este paralelogram, deci DP║BC.
Vă mulțumim că ați vizitat site-ul nostru dedicat Matematică. Sperăm că informațiile oferite v-au fost de ajutor. Dacă aveți întrebări sau nevoie de asistență suplimentară, nu ezitați să ne contactați. Vă așteptăm cu drag data viitoare și nu uitați să ne adăugați la favorite!