👤

(1+i)^100=x+yi
x,y=?

Ajutor clasa a10a ​


Răspuns :

Răspuns:

(1+i)100=x+yixy

(1+i)100=x+yixy

ixy2+x=NaN

ixy2+x+−x=NaN+−x

ixy2=NaN

ixy2

xy2

=

NaN

xy2

i=NaN

Explicație pas cu pas:

Răspuns:

[tex]x = -2^{50}[/tex]

[tex]y = 0[/tex]

Explicație pas cu pas:

[tex](1+i)^{100} = [(1+i)^2]^{50 }= (1+2i+i^2)^{50} = (1+2i-1)^{50} = (2i)^{50} = 2^{50} *i^{50} = \\2^{50}*(i^2)^{25}=2^{50}*(-1)^{25}=2^{50}*(-1) = -2^{50}[/tex]

[tex]x = -2^{50}[/tex]

[tex]y = 0[/tex]